Minggu, 05 Juni 2016

Pemanfaatan Produk Samping Kelapa Sawit Sebagai Sumber Energi Alternatif Terbarukan







PENDAHULUAN
Sebagai bangsa yang besar dengan jumlah penduduk sekitar 220 juta jiwa, Indonesia menghadapi masalah energi yang cukup mendasar. Sumber energi yang tidak terbarukan (non-renewable) tingkat ketersediaannya semakin berkurang. Sebagai contoh, produksi minyak bumi Indonesia yang telah mencapai puncaknya pada tahun 1977 yaitu sebesar 1.7 juta barel per hari terus menurun hingga tinggal 1.125 juta barel per hari tahun 2004. Di sisi lain konsumsi minyak bumi terus meningkat dan tercatat 0.95 juta barel per hari tahun 2000, menjadi 1.05 juta barel per hari tahun 2003 dan sedikit menurun menjadi 1.04 juta barel per hari tahun 2004 (Tabel 1).

Tabel 1. Produksi dan Konsumsi Minyak Bumi Indonesia
Tahun Produksi (juta barel/hari) Konsumsi (juta barel/hari)
2000 1.4 0.9446
2001 1.3 0.9632
2002 1.2 0.9959
2003 1.1 1.0516
2004 1.125 1.0362
Sumber: Media Indonesia, 8 September 2004 dan Kompas, 27 Mei 2004.

Indonesia yang semula adalah tergolong net-exporter di bidang bahan bakar minyak (BBM), sejak tahun 2000 telah menjadi net importer jika produksi minyak mentah Indonesia dikurangi dengan bagian kontraktor asing sebesar 35% produksi. Pada tahun 2003, impor bersih BBM Indonesia mencapai 0.336 juta barel per hari atau sedikit lebih kecil dari produksi bagian kontraktor asing. Impor bersih ini diperkirakan akan terus meningkat dengan semakin menurunnya produksi ladang-ladang minyak Indonesia dan meningkatnya konsumsi minyak penduduk Indonesia.Dalam upaya mengatasi masalah defisit energi tersebut, pengembangan sumber energi terbarukan merupakan suatu keharusan. Terhadap tuntutan ini, industri kelapa sawit mempunyai potensi kontribusi yang sangat besar. Produk utama kelapa sawit yaitu minyak sawit (CPO) kini sudah mulai dikembangkan sebagai sumber energi terbarukan dengan memprosesnya menjadi biodiesel, seperti yang sudah dikembangkan di Malaysia. Produk samping kelapa sawit seperti cangkang dan limbah pabrik CPO juga potensial sebagai sumber biomassa yang dapat dikonversi menjadi energi terbarukan. Alternatif ini memiliki beberapa kelebihan. Pertama, sumber energi tersebut merupakan sumber energi yang bersifat renewable sehingga bisa menjamin kesinambungan produksi. Kedua, Indonesia merupakan produsen utama minyak sawit sehingga ketersediaan bahan baku akan terjamin dan industri ini berbasis produksi dalam negeri. Ketiga, pengembangan alternatif tersebut merupakan proses produksi yang ramah lingkungan. Keempat, upaya tersebut juga merupakan salah satu bentuk optimasi pemanfaatan sumberdaya untuk meningkatkan nilai tambah.Sejalan dengan hal tersebut, maka dalam tulisan ini akan dibahas mengenai pemanfaatan produk samping sawit (PSS) sebagai sumber energi terbarukan. Pembahasan difokuskan pada potensi secara empiris produk samping kelapa sawit sebagai sumber energi terbarukan. Di samping itu, teknologi yang sudah berkembang serta status penguasaan teknologi Indonesia dalam hal produk samping kelapa sawit sebagai sumber energi dibahas secara ringkas di bagian akhir tulisan ini.

PRODUK SAMPING KELAPA SAWIT SEBAGAI SUMBER ENERGI TERBARUKAN 
Potensi Produk Samping Sawit sebagai Sumber Energi Terbarukan

Kebun dan pabrik kelapa sawit menghasilkan limbah padat dan cair dalam jumlah besar yang belum dimanfaatkan secara optimal. Serat dan sebagian cangkang sawit biasanya terpakai untuk bahan bakar boiler di pabrik, sedangkan tandan kosong kelapa sawit (TKKS) yang jumlahnya sekitar 23% dari tandan buah segar yang diolah, biasanya hanya dimanfaatkan sebagai mulsa atau kompos untuk tanaman kelapa sawit (Goenadi et al., 1998). Pemanfaatan dengan cara tersebut hanya menghasilkan nilai tambah yang terendah di dalam rangkaian proses pemanfaatannya.
neraca massa sawit
Gambar 1. Kesetaraan biomassa dan energi dalam proses pengolahan sawit di pabrik kelapa sawit
Proses pengolahan Tandan Buah Segar (TBS) kelapa sawit menjadi Crude Palm Oil (CPO) secara sederhana dapat dilihat pada Gambar 1. Dari 1 ton TBS yang diolah dapat diperoleh CPO sebanyak 140 – 220 kg. Proses ini membutuhkan energi sebanyak 20–25 kWh/t dan 0.73 ton steam (uap panas). Proses pengolahan ini akan menghasilkan limbah padat, limbah cair dan gas. Limbah cair yang dihasilkan sebanyak 600–700 kg POME (Palm Oil Mill Effluent). Limbah padat yang dihasilkan adalah serat dan cangkang sebanyak 190 kg dan 230 kg TKKS segar (kadar air 65%). Selain itu juga dihasilkan limbah emisi gas dari boiler dan incenerator (Lacrosse, 2004).
Potensi energi yang dapat dihasilkan dari produk samping sawit dapat dilihat dari nilai energi panas (calorific value). Nilai energi panas (calorific value) dari beberapa produk samping sawit ditunjukkan pada Tabel 2. Produk samping yang memiliki nilai energi panas tinggi adalah cangkang dan serat. Cangkang dan serat (fibre) dimanfaatkan sebagian besar atau seluruhnya sebagai bahan bakar boiler PKS. Produk samping yang lain belum banyak dimanfaatkan sebagai sumber energi. TKKS yang juga memiliki nilai energi panas cukup tinggi saat ini banyak dimanfaatkan sebagai mulsa atau diolah menjadi kompos. Sebagian PKS masih membakar TKKS dalam incinerator untuk mengurangi volume limbah TKKS, walaupun sudah dilarang sejak tahun 1996.

Tabel 2. Nilai energi panas (calorific value) dari beberapa produk samping sawit (berdasarkan berat kering).

Rata-rata calorific value (kJ/kg) Kisaran (kJ/kg)
TKKS 18 795 18 000 – 19 920
Serat 19 055 18 800 – 19 580
Cangkang 20 093 19 500 – 20 750
Batang 17 471 17 000 – 17 800
Pelepah 15 719 15 400 – 15 680
Sumber: Ma et.al. (2004)

TKKS adalah limbah biomassa yang potensial sebagai sumber energi terbarukan. TKKS dapat digunakan sebagai bahan bakar generator listrik. Sebuah PKS dengan kapasitas pengolahan 200_000 ton TBS/tahun akan menghasilkan seba-nyak 44_000 ton TKKS (kadar air 65%)/tahun. Nilai kalor (heating value) TKKS kering adalah 18.8 MJ/kg, dengan efisiensi konversi energi sebesar 25%, dari energi tersebut ekuivalen dengan 2.3 MWe (megawatt-electric). TKKS dapat juga dimanfaatkan untuk menghasilkan biogas walaupun proses pengolahannya lebih sulit daripada biogas dari limbah cair.
Di samping itu, limbah padat dapat juga diproses menjadi briket arang sebagai sumber energi terbarukan. Dengan teknologi yang relatif sederhana, pemanfaatan limbah padat menjadi briket arang merupakan suatu pilihan yang sangat realistis dan prospektif.
Menurut Loebis dan Tobing (1989), limbah cair PKS berasal dari air kondensat rebusan (150–175 kg/ton TBS), air drab (lumpur) klarifikasi (350–450 kg/ton TBS) dan air hidroksiklon (100-150 kg/ton TBS). PKS dengan kapasitas olah 30 ton TBS/jam menghasilkan limbah cair sebanyak 360–480 m3 per hari dengan konsentrasi BOD rata-rata sebesar 25_000 mg/l. Limbah cair tidak dapat dibuang langsung ke perairan, karena akan sangat berbahaya bagi lingkungan. Saat ini umumnya PKS menampung limbah cair tersebut di dalam kolam-kolam terbuka (lagoon) dalam beberapa tahap sebelum dibuang ke perairan. Secara alami limbah cair di dalam kolam akan melepaskan emisi gas rumah kaca yang berbahaya bagi lingkungan. Gas-gas tersebut antara lain adalah campuran dari gas methan (CH4) dan karbon dioksida (CO2). Kedua gas ini sebenarnya adalah biogas yang dapat dimanfaatkan sebagai sumber energi. Potensi biogas yang dapat dihasilkan dari 600–700 kg POME kurang lebih mencapai 20 m3 biogas (Lacrosse, 2004). Penelitian pemaanfaatan POME untuk menghasilkan biogas saat ini menjadi perhatian banyak pihak. Selain sebagai sumber energi, teknologi biogas ini juga dapat mengurangi dampak emisi gas rumah kaca yang berbahaya bagi lingkungan.

Potensi Indonesia untuk Memanfaatkan Produk Samping Sawit untuk Energi
Indonesia memiliki potensi yang sangat besar dalam memanfaatkan produk samping sawit sebagai sumber energi. Seperti diketahui, kelapa sawit Indonesia merupakan salah satu komoditi yang mengalami perkembangan yang terpesat. Pada era tahun 1980-an sampai dengan pertengahan tahun 1990-an, industri kelapa sawit berkembang sangat pesat. Pada periode tersebut, areal meningkat dengan laju sekitar 11% per tahun. Sejalan dengan perluasan areal, produksi juga meningkat dengan laju 9.4% per tahun. Konsumsi domestik dan ekspor juga meningkat pesat dengan laju masing-masing 10% dan 13% per tahun. Pada awal tahun 2001–2004, luas areal kelapa sawit dan produksi masing-masing tumbuh dengan laju 3.97% dan 7.25% per tahun, sedangkan ekspor meningkat 13.05% per tahun (Direktorat Jenderal Bina Produksi Perkebunan, 2005). Sampai dengan tahun 2020, industri kelapa sawit Indonesia diperkirakan akan terus tumbuh, walau dengan laju pertumbuhan yang lebih rendah apabila dibandingkan dengan periode sebelum tahun 2000. Sampai dengan tahun 2010, produksi CPO diperkirakan akan meningkat antara 5%–6%, sedangkan untuk periode 2010–2020, pertumbuhan produksi diperkirakan berkisar antara 2%–4% (Susila, 2004).
Pertumbuhan produksi CPO berarti pula peningkatan ketersediaan produk samping sawit yang antara lain bersumber dari TBS. Seperti terlihat pada Gambar 2, produksi TBS diperkirakan akan terus meningkat dan mencapai sekitar 83 juta ton pada tahun 2020, sehingga dapat dihasilkan 17 ton CPO. Volume tersebut merupakan sumber produk samping yang sangat besar untuk menghasilkan energi.

grafik2
Gambar 2. Grafik Perkembangan dan Proyeksi Produksi CPO Indonesia 2000/2010.

Volume produksi CPO tersebut dihasilkan dari 205 pabrik kelapa sawit yang sebagian besar berlokasi di Sumatera (177 pabrik), dan lainnya di Kalimantan, Sulawesi dan Jawa. Sebagai ilustrasi, produksi TBS Indonesia pada tahun 2004 diperkirakan sebesar 53_762 juta ton TBS. Produksi ini akan terus meningkat dan pada tahun 2010 diperkirakan mencapai 64_000 juta ton TBS. Dari produksi TBS tahun 2004 dapat diperkirakan produksi POME sebanyak 32_257 – 37_633 juta ton dan TKKS sebanyak 12_365 juta ton. Jumlah ini sangat melimpah dan berpotensi besar sebagai sumber energi terbarukan.
Potensi produksi biogas dari seluruh limbah cair tersebut kurang lebih adalah sebesar 1075 juta m3. Nilai kalor (heating value) biogas rata-rata berkisar antara 4700–6000 kkal/m3 (20–24 MJ/m3) (CTL, 2004). Dengan nilai kalor tersebut 1075 juta m3 biogas akan setara dengan 516_000 ton gas LPG, 559 juta liter solar, 666.5 juta liter minyak tanah, dan 5052.5 MWh listrik. TKKS juga memiliki potensi energi yang besar sebagai bahan bakar generator listrik. TKKS sebanyak 12_365 juta ton berpotensi menghasilkan energi sebesar 23_463.5 juta MWe.
Alternatif lain pemanfaatan limbah padat kelapa sawit yang paling sederhana untuk Indonesia adalah menjadikannya briket arang. Hal ini dapat dilakukan dengan memperbaiki sifat tersebut dengan cara pemadatan melalui pembriketan, pengeringan dan pengarangan. Pusat Penelitian Kelapa Sawit (PPKS) telah merancang bangun paket teknologi untuk produksi briket arang dari limbah sawit, baik tandan kosong maupun cangkang sawit.
Pada dasarnya ada dua metode pembuatan briket arang, yaitu (i) bahan baku-penggilingan-pengayakan-pembriketan-pengarangan, dan (ii) bahan baku-pengarangan-penggilingan-pengayakan-pembriketan. Untuk limbah sawit ternyata metode kedua lebih sesuai untuk menghasilkan briket arang yang bermutu tinggi.
TKKS dan cangkang sawit memiliki karakteristik yang berbeda, sehingga untuk proses pengarangannya juga memerlukan tungku yang berbeda. Untuk TKKS, proses pengarangan lebih sesuai dilakukan dalam tungku vertikal, sedangkan untuk cangkang sawit lebih baik dilakukan proses pengarangan pada tungku horisontal. Rendemen yang dihasilkan dari proses pengarangan tersebut adalah 25–30%.
Proses pembriketan limbah sawit dapat dilakukan dengan mesin pembriket tipe ulir dengan kapasitas 1 ton per hari. Mesin ini menghasilkan briket arang berbentuk silinder dengan diameter 5 cm dan panjang 10–30 cm. ukuran ini sesuai dengan briket arang komersial yang dibuat dari serbuk gergaji. Briket arang sawit memiliki keunggulan yaitu permukaannya halus dan tidak meninggalkan warna hitam apabila dipegang.
Karakteristik briket arang yang terbuat dari TKKS dan cangkang sawit sangat berbeda, seperti yang terlihat pada Tabel 3. Briket arang TKKS memiliki kadar abu yang lebih tinggi, sedangkan kadar kalor dan karbon terikatnya lebih rendah. Ditinjau dari segi kalor, kedua briket arang tersebut telah memenuhi Standar Nasional Indonesia (SNI) untuk briket arang kayu yaitu minimal 5000 kalori/gram.
Tabel 3. Karakteristik Briket Arang dari TKKS dan Cangkang Sawit

No Karakteristik Briket arang tandan kosong sawit Briket arang cangkang sawit
1 Kadar air, % 9.77 8.47
2 Kadar abu, % 17.15 9.65
3 Kadar zat terbang, %
(volatile matter)
29.03 21.10
4 Kadar karbon terikat, %
(fixed carbon)
53.82 69.25
5 Keteguhan tekan, kg/cm2 2.10 7.82
6 Nilai kalor, kal/g 5_578.00 6_600.00

Perkembangan Teknologi Energi Terbarukan dari Produk Samping Sawit

Potensi biomassa dari produk samping sawit sebagai sumber energi terbarukan mulai dikembangkan di beberapa negera produsen sawit utama. Malaysia sebagai salah satu negera produsen CPO utama telah mengembangkan teknologi produksi biogas dari POME. Dari sisi teknologi Malaysia lebih maju daripada Indonesia dalam mengembangkan teknologi ini. Sejak tahun 2001 Malaysia melaksanakan program pengembangan energi terbarukan yang disebut dengan Small Renewable Energy Programe (SREP) (Yeoh, 2004). Salah satu energi terbarukan yang dikembangkan dalam program ini adalah pengembangan biogas dari POME (Ma et al, 2003). Saat ini mereka telah berhasil mengembangkan bioreaktor untuk produksi biogas dari POME. Bumibiopower (Pantai Remis) Sdn. Bhd. adalah salah satu perusahaan di Malaysia yang melaksanakan proyek untuk mengembangkan pabrik produksi biogas dari POME (Mitsubishi Securities, 2004). Pabrik ini direncanakan akan mengolah POME dari salah satu pabrik kelapa sawit yaitu Pantai Remis Paml Oil Mill. Biogas yang dihasilkan juga akan digunakan untuk generator listrik dengan kapasitas 1 MW – 1.5 MW.
COGEN bekerjasama dengan ASEAN melaksanakan proyek pengembangan energi terbarukan dari limbah biomassa sebanyak 8 proyek ( 3 proyek di Thailand, 3 proyek di Malaysia, dan 2 proyek di Singapura). Proyek ini memanfaatkan limbah biomassa, salah satunya adalah TKKS, sebagai bahan bakar generator listrik. Proyek pemanfaatan TKKS sebagai bahan bakar listrik dilaksanakan oleh TSH Bio Energy Sdn Bhn di Sabah, Malaysia. Kapasitas listrik yang dihasilkan adalah sebesar 14 MW (Lacrosse, 2004).
Pengembangan produk samping sawit sebagai sumber energi terbarukan masih tertinggal dibandingkan negera-negara lain. Menurut Abdullah (2004) dari total potensi biomassa (TKKS termasuk di dalamnya) sebesar 178 MWe baru sekitar 0.36% yang dimanfaatkan. Melalui Kep.Men. No. 1122 K/30/MEM/2002 tentang Distribusi Pembangkit Listrik Skala Kecil, Indonesia mulai mengembangkan energi terbarukan. Tahun 2005 Indonesia mendapatkan bantuan sebesar $ US 500.000 dollar dari ADB (Bank Pembangunan Asia) untuk mengembangkan energi terbarukan dari limbah cair kelapa sawit (Kompas, 27 Desember 2004).


Dalam waktu yang tidak terlalu lama, Indonesia diperkirakan akan mengalami defisit energi dengan volume defisit semakin meningkat. Hal ini terjadi karena sementara konsumsi energi terus meningkat, sumber energi, khususnya yang tidak terbarukan, semakin menurun. Untuk mengatasi hal ini, pengembangan sumber energi yang terbarukan merupakan pilihan yang strategis. Dalam konteks ini, pemanfaatan produk samping sawit dan limbahnya mempunyai potensi besar untuk dimanfaatkan. Produk samping sawit dan limbahnya mempunyai potensi besar sebagai sumber energi yang terbarukan. Dengan perkembangan industri kelapa sawit yang masih relatif pesat, upaya untuk mewujudkan hal tersebut perlu mendapat prioritas. Indonesia perlu segera memacu diri untuk mewujudkan hal tersebut sehingga ketertinggalan dengan negara lain dalam hal teknologi dan implementasi dapat terus diperkecil. Hal ini memerlukan dukungan semua pihak, khususnya pelaku bisnis, lembaga riset, dan pemerintah. Kebijakan Pemerintah perlu diarahkan pada pemberian insentif finansial kepada industri yang merintis kegiatan pengembangan energi terbarukan seperti ini, misalnya dengan memanfaatkan sebagian dana kompensasi pencabutan subsidi BBM.






 
 
      Telah dilakukan penelitian pemanfaatan abu janjang dari limbah pabrik kelapa sawit sebagai sumber unsur kalium untuk tanaman padi. Abu janjang mengandung sebesar 18,48% K2O, 3,51% Mg, 2,40% Ca, dan 1,95% P2O5. Berdasarkan kandungan unsur hara K, pemberian 325 kg/ha abu janjang setara dengan pemberian 100 kg/ha pupuk KCl. Percobaan lapangan dilakukan di Ciparay, pada ketinggian tempat 672 m 
di atas permukaan laut, dari bulan Oktober 1998 sampai bulan Maret 1999.
     Penelitian  menggunakan Rancangan Acak Kelompok dengan tujuh perlakuan dan tiga ulangan. Perlakuan terdiri dari abu janjang dengan dosis 81,25; 162,50; 243,75; 325, dan 406,25 kg/ha, pupuk KCl pada dosis 100 kg/ha, dan kontrol. Hasil penelitian menunjukkan bahwa pemberian abu janjang pada dosis 406,25 kg/ha memberikan hasil tertinggi terhadap produksi, komponen produksi (jumlah malai/rumpun, jumlah butir/malai, dan berat 1000 butir (gabah bernas), kandungan K pada tanaman dan berat kering tanaman. Pada percobaan yang dilakukan pemberian abu janjang pada dosis 325 kg/ha dapat menggantikan pupuk anorganik KCl 100 kg/ha KCl.
       Hasil penelitian ini memberikan manfaat terhadap produksi tanaman padi dan menjaga lingkungan. Efektivitas pengelolaan abu janjang sebagai sumber pupuk kalium ini perlu didukung oleh kebijakan-kebijakan pemerintah.


Abu janjang adalah hasil pengabuan secara perlahan-lahan dari janjangan kosong di dalam incinerator.  Produksi abu janjang adalah sekitar 0.5% dari TBS.  Abu janjang mempunyai kandunganhara Kalium (K) yang tinggi dan dapat dipakai sebagai pengganti pupuk MOP.  Satu kilo gram abu janjang setara dengan 0.6 kg MOP.
Aplikasi abu janjang bertujuan untuk menggantikan pupuk MOP dan sebagai bahan pengapuran untuk menaikkan pH tanah.  Hasil penelitian menunjukkan bahwa pemupukan dengan abu janjang di tanah gambut lebih efektif dibanding dengan pemupukan MOP.
  Sangat alkalis (pH = 12).
   Sangat higroskopis (mudah menyerap uap air dari udara).
   Mengiritasi tangan karyawan (menyebabkan gatal-gatal dan memperparah luka).
   Hara yang terkandung di dalamnya amat mudah larut di dalam air.
karena sifat-sifat abu janjang tersebut, maka abu janjang harus cepat diaplikasikan (tidak boleh disimpan lama), penyimpanannya harus baik (dalam kantong plastik, tidak langsung dalam karung goni) dan selalu diperlakukan dengan hati-hati.
Aplikasi abu janjang diprioritaskan untuk areal gambut/tanah masam.  Pada tanah gambut, selain pada TM abu janjang juga diberikan pada TBM tahun ke-2 dan ke-3.  Pada tanah mineral, abu janjang hanya diberikan pada TM.
Untuk tanah gambut dan tanah masam acid-sulphate, abu janjang diberikan tiap tahun.  Untuk daerah tanah masam bukan acid-sulphate (pH 4-5), abu janjang hanya diberikan sekali saja dalam 6 bulan. 
Tandan kosong kelapa sawit sebagai limbah padat dapat dibakar dan menghasilkan abu tandan. Abu tersebut ternyata mengandung 30 - 40% K2O, 7% P2O5, 9% CaO dan 3% MgO. Selain itu  juga mengandung unsur hara mikro yaitu 1.200 ppm Fe, 1.000 ppm Mn,  400 ppm Zn, dan 100 ppm Cu.
Sebagai Gambaran Umum bahwa pabrik yang mengolah kelapa sawit dengan 1.200 ton TBS/hari akan menghasilkan abu tandan sebesar 10.8% atau sekitar 129.6 ton abu/hari, setara dengan 5.8 ton KCL, 2.2 ton Kiserite dan 0.7 ton TSP. dengan penambahan polimer tertentu pada abu tandan dapat dibuat pupuk butiran berkadar K2O 30 - 38% dengan pH 8 - 9
          Kelangkaan pupuk KCL yang kerap kali dihadapi oleh perkebunan dapat diatasi dengan menggantinya menggunakan abu tandan. Biaya produksinya pun lebih rendah dibandingkan dengan harga pupuk KCL.
Tandan kosong kelapa sawit (TKKS) dapat dimanfaatkan sebagai sumber pupuk organik yang memiliki kandungan unsur hara yang dibutuhkan oleh tanah dan tanaman.Tandan kosong kelapa sawit mencapai 23% dari jumlah pemanfaatan limbah kelapa sawit tersebut sebagai alternatif pupuk organik juga akan memberikan manfaat lain dari sisi ekonomi. bagi perkebunan kelapa sawit, dapat menghemat penggunaan pupuk sintesis sampai dengan 50%, pupuk organik yang dihasilkan dari TKKS dapat beupa pupuk kompos dan pupuk Kalium.
A. Pupuk Kompos

                    Pupuk kompos adalah bahan organik yang telah mengalami fermentasi atau dekomposisi yang dilakukan oleh mikroorganisme. pada prinsipnya pengomposan TKKS untuk menurunkan nisbah C/N yang terkandung didalam tandan segar agar mendekati nisbah C/N tanah. C/N yang mendekati nisbah C/N tanah akan mudah diserap oleh tanaman. C/N kompos yang diinginkan adalah < 20
              Untuk membuat kompos tandan kosong dicacah terlebih dahulu menjadi serpihan-serpihan dengan memakai mesin pencacah. kemudian bahan yang telah dicacah ditumpuk memanjang dengan ukuran lebar sekita 2.5 m dan tinggi 1 m. Selama proses pengomposan tumpukan tersebut disiran oleh limbah cair yang berasal dari pabrik kelapa sawit. Tumpukan tersebut dibiarkan diatas lantai semen dan dibiarkan diudara terbuka selama enam minggu. Kompos dibolak-balik dengan mesin pembalik. Setelah itu, kompos siap dimanfaatkan. Pabrik kelapa sawit dengan kapasitas 30 ton tandan buah segar per jam dapat menghasilkan 60 ton kompos dari 100 ton tandan kosong yang dihasilkan.
            Kompos TKKS dapat dimanfaatkan untuk memupuk semua jenis tanaman. Kompos TKKS memiliki beberapa sifat yang menguntungkan antara lain sebagai berikut :
  1. Memperbaiki struktur tanah berlempung menjadi ringan
  2. membantu kelarutan unsur-unsur hara yang diperlukan bagi pertumbuhan tanaman.
  3. bersifat homogen dan mengurangi resiko sebagai pembawa hama tanaman
  4. merupakan pupuk yang tidak mudah tercuci oleh air yang meresap kedalam tanah.
  5. dapat diaplikasikan pada sembarang musim.
               tandan kelapa sawit yang diubah menjadi kompos tidak hanya mengandung nutrisi tetapi juga mengandung bahan organik lain yang berguna bagi perbaikan struktur organik pada lapisan tanah, terutama pada kondisi tanah tropis. Kompos merupakan sumber Fosfor (P), Kalsium (ca), Magnesium (Mg), dan Karbon (C). Perlu diketahui bahwa pada proses pengomposan TKKS tidak menggunakan cairan asam dan bahan kimia lain sehingga tidak terdapat pencemaran atau polusi. Proses pengomposan pun tidak menghasilkan limbah. Dibawah ini ditampilkan beberapa gambar pengomposan.


 

 

Pembuatan kompos dari tandan kosong kelapa sawit

Tulisan ini disusun dalam rangka mendukung upaya pemerintah dalam menciptakan program “Air Bersih” dan “Langit Biru”. Tulisan ini mengacu pada hasil dari International Oil Palm Conference tgl. 8 s/d 12 Juli 2002 yang dilakukan di Hotel Sheraton Nusa Indah – Bali dan Percobaan Pusat Penelitian Kelapa Sawit tentang Pembuatan Kompos dari Tandan Kosong di Pabrik Kelapa Sawit (PKS) Mini Aek Pancur milik PPKS di Sumatera Utara maka tidak diragukan lagi untuk menerapkan pembuatan kompos dalam skala besar di Pabrik Kelapa Sawit (PKS) sekaligus mengatasi problema pengendalian limbah padat dan cair yang meresahkan penduduk yang berada disekitar pabrik.
Rencana tersebut diatas diperkenalkan menjadi PKS “Tanpa Limbah” dimana limbah padat dan limbah cair dapat diolah menjadi komoditi yang menarik berupa kompos organik dan pelaksanaannya memerlukan peralatan / mesin-mesin yang mendukung kemudahan pembuatan kompos antara lain ialah Mesin Pencacah Janjangan Kosong, Mesin Pembalik Kompos (Turning Machine) dan Mesin Pemisah Minyak dengan limbah model mutakhir (Decanter) yang bekerja memisahkan minyak dari hasil pemerasan buah sawit yang sudah direbus tanpa penambahan air pengencer.
Luas lahan yang diperlukan untuk pemeraman kompos kurang lebih 3 - 4 Ha dan apabila tidak ada lahan kosong disekitar pabrik dapat dilakukan dibawah pohon sawit dewasa ialah gawang - mati yang mempunyai ketinggian lewat 3 m.
Tulisan ini menyajikan uraian singkat tentang kapasitas produksi kompos, biaya investasi dan perkiraan nilai tambah yang dihasilkan dari PKS dan telah berhasil dilaksanakan pertama kali dalam skala besar di PKS Kuamang PT. Tasmapuja Riau April 2005.

JENIS LIMBAH PKS DAN PENGENDALIANNYA.

Munculnya pabrik – pabrik kelapa sawit diiringi dengan hasil limbah yang jumlahnya besar dimana limbah dari PKS pada garis besarnya berupa limbah padat dan limbah cair.

Limbah Padat : berupa Tandan Kosong (Tankos)

Penanganan limbah padat dari PKS selama ini beragam, antara lain :
- Tan Kos dibakar di tungku Pembakaran / Incinerator tetapi sekarang tidak populer lagi karena menimbulkan polusi udara.
- Tan Kos untuk Mulching (serasah) ke tanaman sawit tetapi dalam pelaksanaanya dilapangan ternyata tidak berjalan dengan baik, dimana janjang kosong hanya pindah tempat dari pabrik ke tepi jalan dan apabila terbakar tidak dapat dipadamkan dan menimbulkan permasalahan baru berupa asap.
- Tan Kos dicincang, dipres dan dijadikan bahan bakar ketel tetapi kebutuhan bahan bakar Ketel Uap di pabrik sawit sudah mencukupi menggunakan serabut / fibre dan cangkang sehingga tidak perlu adanya tambahan Tan Kos terkecuali untuk PKS terpadu dengan industri lain misalnya pabrik minyak makan dan lain-lain yang memerlukan tambahan tenaga listrik.

Limbah Cair PKS (berasal dari Kondensat Rebusan dan Limbah Cair dari Stasiun pengutipan Minyak)

Pengendalian limbah cair yang dilakukan di PKS antara lain sebagai berikut :
- Limbah Cair diperam dalam kolam – kolam pemeraman Anaerobic (pemeraman tanpa adanya peranan O2) sampai kadar ambang batas BOD (Biological Oxigen Demand) menurun untuk selanjutnya dilepas ke alam bebas tetapi masih mengundang permasalahan dengan penduduk yang ada disekitar pabrik karena bau yang tidak sedap oleh timbulnya gas Methan (CH4) dan H2S atau ada kalanya kolam bocor.
- Limbah Cair untuk pemupukan tanaman sawit (Land Application), dimana limbah cair diperam sampai ambang batas BOD menurun pada kadar tertentu (5000 – 3000) kemudian dipompa ke tanaman sawit. Berarti diperlukan jaringan pipa tetapi di musim hujan limbahnya melimpah kemana-mana.
Pengendalian limbah padat dan cair yang menarik ialah untuk pembuatan kompos organik dengan bahan baku janjang kosong yang dicincang dan dicampur dengan limbah cair.
Jumlah limbah cair menurut pengamatan Pusat Penelitian Kelapa Sawit (PPKS Medan / RISPA) jumlahnya berkisar 0,7 x TBS yang diolah. Limbah padat PKS berupa janjangan kosong dengan jumlah berkisar 23 – 25% dari Tandan Buah Segar.
Akhir-akhir ini telah berkembang peralatan - peralatan baru yang bertujuan untuk mengurangi sebanyak mungkin hasil limbah cair PKS dan mengarahkan sebagian besar limbahnya menjadi kompos dalam skala besar dengan nilai komersil yang menarik, peralatan tersebut sebagai berikut :
- Mesin pencacah Janjangan Kosong (Empty Buch Crushing Machine)
- Mesin pembalik (Turning Machine)
- Mesin / peralatan pemisah minyak yang mampu beroperasi dengan tanpa penambahan air pengencer sehingga limbah cair menjadi sangat berkurang menghasilkan minyak sawit dan bubur limbah (slurry).


PRINSIP PENGOMPOSAN.

Teknologi pembuatan Kompos Organik sebenarnya sudah dikenal sejak dahulu kala tetapi dalam skala kecil. Dalam skala besar dimana Tan Kos ditumpuk dan dibiarkan sampai membusuk tidak akan menjadi kompos organik yang bermutu karena nilai C/N masih tinggi. Pengomposan adalah penurunan rasio atau perbandingan antara karbohidrat dan nitrogen dengan singkatan nilai C/N. Bahan organik yang berasal dari tanaman atau hewan / kotoran hewan yang masih segar mempunyai nilai C/N yang tinggi antara 50 – 400 (kayu yang tua).
Bahan oprganik dapat diserap tanah adalah mempunyai C/N yang sama dengan tanah ialah sekitar 10 – 12 oleh karena itu limbah sawit (cair dan padat) yang mempunyai nilai C/N tinggi harus diturunkan.
Dalam proses pengomposan terjadi perubahan sebagai berikut :

a. Karbohidrat, Selosa, Hemiselulosa, lemak, lilin menjadi CO2 dan air.
b. Zat putih telur menjadi Amonia, CO2 dan air.

Proses pengomposan yang akan diterapkan ialah proses Aerobic dalam keadaan adanya O2 bukan proses Anaerobic dalam keadaan tanpa O2 seperti halnya dikolam limbah yang banyak diterapkan di PKS.
Dalam pembuatan kompos organik proses Aerobic akan menghasilkan CO2, air dan panas, maka yang perlu dijaga ialah kelembaban sekitar 40 – 60% agar micro organisme dapat bekerja secara optimal dengan suhu optimal 30 – 50°C (hangat), oleh karena itu tumpukan kompos perlu dibalik (1 sampai 5 kali seminggu).
Dalam proses pengomposan bekerja bakteri, fungi, actinomycetes dan protozoa dan dapat dipercepat dengan aktivator antara lain EM4, Orga Dec, Stardec, Fix Up Plus, Harmony dan Mikrorganisme.
Mikroorganisme akan lebih aktif apabila PH berada antara 6,5 – 7,5 oleh karena itu dalam proses pengomposan sering ditambahkan kapur atau abu maka perlu tumpukan kompos dibalik.
Kompos adalah bahan organik yang mengalami degradasi / penguraian sehingga berubah bentuk secara biologi dalam suhu tinggi dan setelah selesai terjadilah nilai C/N yang sama dengan tanah 10 – 12, sehingga dapat diserap oleh tanaman.

CARA PEMBUATAN KOMPOS ORGANIK SKALA BESAR.

Bahan kompos organik berupa cacahan Tan Kos ditambah limbah cair dari PKS.
PKS kapasitas 30 T. TBS/Jam akan menghasilkan tandan kosong sebanyak 23% x 30 T. TBS/Jam x 20 Jam operasi sehari = 23% x 30 x 20 = 138 Ton Janjangan Kosong.
Slurry / bubur Limbah dari minyak mentah Non Deluted Decanter menghasilkan Raw Oil dan bubur limbah / slurry bukan solid sebanyak 6,9 T/Jam x 20 Jam sehari = 6,9 x 20 = 138 Ton slurry / hari dan slurry tersebut yang akan dicampur kecacahan Tandan Kosong untuk diperam menjadi Kompos Organik.
Jumlah bahan kompos = 138 T + 138 T = 276 Ton / Hari.

Proses pencacahan dan pencampuran limbah cair.

Cacahan Janjangan Kosong yang keluar dari Mesin Pencacah disalurkan ke saluran (Conveyor) dimana slurry yang keluar dari Decanter jatuh ke saluran / Conveyor yang sama sehingga teraduk bercampur menjadi satu secara merata. Campuran cacahan Janjangan Kosong dan slurry yang terkumpul di lantai beton selanjutnya disekop dengan Loader dimuat ke Dump Truck diangkut ke lapangan pemeraman kompos.

Proses Pemeraman.

Campuran Cacahan Janjangan Kosong dan Bubur Limbah (Slurry) digelar dilapangan terbuka dalam barisan berukuran 2,5 tinggi 1,5m panjang 50 m. barisan kompos ditutup dengan plastik oleh mesin Pembalik (Turning Machine) yang dilengkapi dengan rol penggulung plastik.

Pengadukan Kompos dan Pematangan Kompos.

Apabila suhu kompos naik sampai lewat 60°C maka diaduk oleh mesin pembalik sambil disemprot dengan limbah Condensat Rebusan. Kegiatan membuka plastik, mengaduk, menyemprot, menutup kembali dengan plastik dilakukan 1 – 2 kali seminggu. Kompos akan matang setelah diproses selama 50 hari tanpa tambahan additive (Aktivator untuk mempercepat pembusukan yang banyak beredar dipasaran yaitu : Stardex, EM4 dan lain - lain).

Penggudangan dan Pengepakan Kompos.

Kompos yang sudah masak di muat ke Dump Truck oleh Loader dan digudangkan dalam bangunan berlantai beton, beratap seng, dinding setengah terbuka berukuran lebar 8 m panjang 80 m.
Di dalam gudang tersebut dilakukan pengayakkan dengan saringan pasir dan digonikan untuk selanjutnya dipasarkan.

Luas Lapangan Pemeraman.

Lapangan pemeraman kompos akan memerlukan luas 3 – 4 Ha. Berisi 115 jalur kompos ukuran lebar 2,5 tinggi 1,5 m panjang 80 m. Apabila disekitar pabrik tidak ada lapangan kosong, maka pemeraman dapat dilakukan dibawah pohon sawit dewasa tanpa penumbangan. Penimbunan kompos tersebut ditempatkan pada gawangan mati. Satu hektar (Ha) tanaman sawit dewasa dapat diisi 9 jalur kompos di gawangan mati. Luas tanaman sawit dewasa untuk ditempati jalur kompos dengan siklus pemeraman 50 Hari = 22 - 25 Ha.

Urutan Kegiatan dilapangan sebagai berikut :

Kegiatan Minggu Pertama (Ke – 1)

Hasil bahan kompos dari cincangan janjangan kosong + slurry diletakkan pada areal pengomposan yang terbagi dalam beberapa Blok A s/d S dan setiap blok mempunyai jalur bervariasi dan rata-rata ada 5 Jalur.
Setelah salah satu jalur sudah terisi oleh bahan kompos, maka dilaksanakan penutupan dengan plastik (mulai pemeraman) dan sebelum ditutup plastik bahan kompos terlebih dahulu disiram dengan air limbah kondensat rebusan untuk mempertahankan bahan kompos tetap basah selama masa pemeraman dan suhu bahan kompos lebih terjaga dalam keadaan stabil ialah 40 – 50°C, (pencatatan suhu bahan kompos tetap dilakukan).

Kegiatan Miggu Ke 2 s/d Minggu ke 6.

Minggu ke 2 (mulai hari ke 7) bahan kompos yang sudah diperam selama 6 hari dan suhu naik sampai 60°C maka dilaksanakan pembalikan dan penyiraman dengan air limbah kondensat rebusan dan ditutup kembali (pencatatan tetap dilakukan).
Kegiatan yang sama seperti tersebut diatas dilakukan berdasarkan pencatatan suhu bahan kompos setiap harinya dan yang sudah lebih 60°C dilaksanakan pembalikan (setiap pembalikan dilakukan juga penyiraman dengan kondensat rebusan) dan dilaksanakan selama 5 minggu (Minggu ke 2 s/d Minggu ke 6).
Sebelum dilaksanakan pembalikan terlebih dahulu jalur jalur yang akan dibalik dibuka plastiknya dengan menggunakan mesin pembalik (Turning Machine), penyiraman disesuaikan dengan kondisi kelembaban bahan kompos.

Minggu Ke 7 s/d Minggu ke 8.

Bahan kompos yang sudah mengalami pemeraman selama 6 minggu, maka pada minggu ke 7 s/d minggu ke 8 ialah masa pengeringan bahan kompos (menjadi seperti tanah), dimana pencatatan suhu terus dilakukan dan apabila suhu lebih 60°C segera dilakukan pembalikan tanpa penyiraman. Untuk mempercepat pengeringan dan penyempurnaan bentuk bahan kompos maka pembalikan dilakukan (4-7) kali seminggu dan semakin sering semakin baik.
Catatan : Pada masa pengeringan dan pembentukan bahan kompos akan terjadi penyesuaian PH dari 8 – 9 menjadi PH 6 – 7,5 pembentukan warna menjadi hitam kecoklat-coklatan.

Jumlah Kompos Yang Dihasilkan.

Jumlah kompos yang dihasilkan ± 20% dari bahan = 20% x 278 T = 55,2 T. Kompos / hari. Satu tahun hasil kompos = 55,2 x 25 x 12 = 16560 T. Kompos Organik / tahun.